Neural Network Toolbox™ Release Notes

How to Contact MathWorks

www.mathworks.com

comp.soft-sys.matlab

www.mathworks.com/contact TS.html Technical Support

Web

Newsgroup

suggest@mathworks.com bugs@mathworks.com

doc@mathworks.com

service@mathworks.com info@mathworks.com

Product enhancement suggestions

Bug reports

Documentation error reports

Order status, license renewals, passcodes Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc. 3 Apple Hill Drive Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Neural Network ToolboxTM Release Notes

© COPYRIGHT 2005–2012 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for more information.

Contents

Summary by Version	1
Version 7.0.3 (R2012a) Neural Network Toolbox Software	4
Version 7.0.2 (R2011b) Neural Network Toolbox Software	5
Version 7.0.1 (R2011a) Neural Network Toolbox Software	6
Version 7.0 (R2010b) Neural Network Toolbox Software	7
Version 6.0.4 (R2010a) Neural Network Toolbox Software	24
Version 6.0.3 (R2009b) Neural Network Toolbox Software	25
Version 6.0.2 (R2009a) Neural Network Toolbox Software	26
Version 6.0.1 (R2008b) Neural Network Toolbox Software	27
Version 6.0 (R2008a) Neural Network Toolbox Software	28
Version 5.1 (R2007b) Neural Network Toolbox Software	32
Version 5.0.2 (R2007a) Neural Network Toolbox Software	40

Version 5.0.1 (R2006b) Neural Network Toolbox Software	41
Version 5.0 (R2006a) Neural Network Toolbox Software	42
Version 4.0.6 (R14SP3) Neural Network Toolbox Software	46
Compatibility Summary for Neural Network Toolbox Software	47

Summary by Version

This table provides quick access to what's new in each version. For clarification, see "Using Release Notes" on page 2.

Version (Release)	New Features and Changes	Version Compatibility Considerations	Fixed Bugs and Known Problems
Latest Version V7.0.3 (R2012a)	No	No	Bug Reports Includes fixes
V7.0.2 (R2011b)	No	No	Bug Reports Includes fixes
V7.0.1 (R2011a)	No	No	Bug Reports Includes fixes
V7.0 (R2010b)	Yes Details	Yes Summary	Bug Reports Includes fixes
V6.0.4 (R2010a)	No	No	Bug Reports Includes fixes
V6.0.3 (R2009b)	No	No	Bug Reports Includes fixes
V6.0.2 (R2009a)	No	No	Bug Reports Includes fixes
V6.0.1 (R2008b)	No	No	Bug Reports Includes fixes
V6.0 (R2008a)	Yes Details	Yes Summary	Bug Reports Includes fixes
V5.1 (R2007b)	Yes Details	Yes Summary	Bug Reports Includes fixes
V5.0.2 (R2007a)	No	No	Bug Reports
V5.0.1 (R2006b)	No	No	Bug Reports
V5.0 (R2006a)	Yes Details	Yes Summary	Bug Reports
V4.0.6 (R14SP3)	No	No	Bug Reports

Using Release Notes

Use release notes when upgrading to a newer version to learn about:

- New features
- Changes
- Potential impact on your existing files and practices

Review the release notes for other MathWorks® products required for this product (for example, MATLAB® or Simulink®). Determine if enhancements, bugs, or compatibility considerations in other products impact you.

If you are upgrading from a software version other than the most recent one, review the current release notes and all interim versions. For example, when you upgrade from V1.0 to V1.2, review the release notes for V1.1 and V1.2.

What Is in the Release Notes

New Features and Changes

- New functionality
- Changes to existing functionality

Version Compatibility Considerations

When a new feature or change introduces a reported incompatibility between versions, the **Compatibility Considerations** subsection explains the impact.

Compatibility issues reported after the product release appear under Bug Reports at the MathWorks Web site. Bug fixes can sometimes result in incompatibilities, so review the fixed bugs in Bug Reports for any compatibility impact.

Fixed Bugs and Known Problems

MathWorks offers a user-searchable Bug Reports database so you can view Bug Reports. The development team updates this database at release time

and as more information becomes available. Bug Reports include provisions for any known workarounds or file replacements. Information is available for bugs existing in or fixed in Release 14SP2 or later. Information is not available for all bugs in earlier releases.

Access Bug Reports using your MathWorks Account.

Documentation on the MathWorks Web Site

Related documentation is available on mathworks.com for the latest release and for previous releases:

- Latest product documentation
- Archived documentation

Version 7.0.3 (R2012a) Neural Network Toolbox Software

This table summarizes what's new in Version 7.0.3 (R2012a).

New Features and Changes	Version Compatibility Considerations	Fixed Bugs and Known Problems
No	No	Bug Reports Includes fixes

Version 7.0.2 (R2011b) Neural Network Toolbox Software

This table summarizes what's new in Version 7.0.2 (R2011b).

New Features and Changes	Version Compatibility Considerations	Fixed Bugs and Known Problems
No	No	Bug Reports Includes fixes

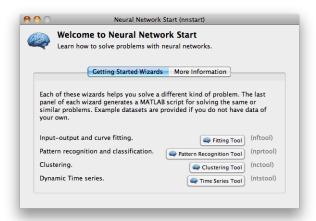
Version 7.0.1 (R2011a) Neural Network Toolbox Software

This table summarizes what's new in Version 7.0.1 (R2011a).

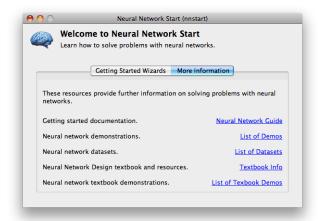
New Features and Changes	Version Compatibility Considerations	Fixed Bugs and Known Problems
No	No	Bug Reports Includes fixes

Version 7.0 (R2010b) Neural Network Toolbox Software

This table summarizes what's new in Version 7.0 (R2010b):

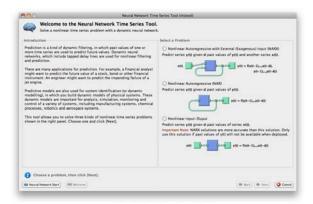

New Features and Changes	Version Compatibility Considerations	Fixed Bugs and Known Problems
Yes Details below	Yes—Details labeled as Compatibility Considerations, below. See also Summary.	Bug Reports Includes fixes

New features and changes introduced in this version are:

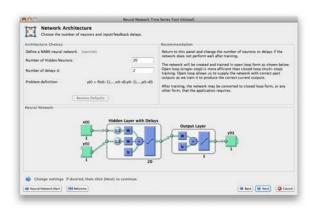

- "New Neural Network Start GUI" on page 8
- "New Time Series GUI and Tools" on page 9
- "New Time Series Validation" on page 15
- "New Time Series Properties" on page 15
- "New Flexible Error Weighting and Performance" on page 16
- "New Real Time Workshop and Improved Simulink Support" on page 18
- "New Documentation Organization and Hyperlinks" on page 19
- $\bullet\,$ "New Derivative Functions and Property" on page $20\,$
- "Improved Network Creation" on page 20
- "Improved GUIs" on page 22
- "Improved Memory Efficiency" on page 22
- "Improved Data Sets" on page 22
- "Updated Argument Lists" on page 23

New Neural Network Start GUI

The new nnstart function opens a GUI that provides links to new and existing Neural Network Toolbox™ GUIs and other resources. The first panel of the GUI opens four "getting started" wizards.

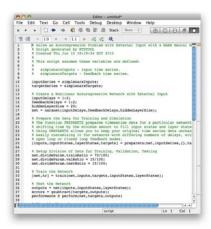


The second panel provides links to other toolbox starting points.



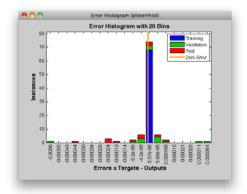
New Time Series GUI and Tools

The new ntstool function opens a wizard GUI that allows time series problems to be solved with three kinds of neural networks: NARX networks (neural auto-regressive with external input), NAR networks (neural auto-regressive), and time delay neural networks. It follows a similar format to the neural fitting (nftool), clustering (nctool), and pattern recognition (nprtool) tools.

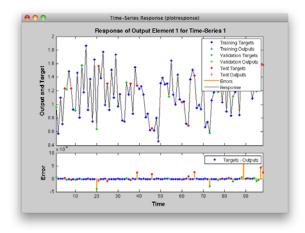


Network diagrams shown in the Neural Time Series Tool, Neural Training Tool, and with the view(net) command, have been improved to show tap delay lines in front of weights, the sizes of inputs, layers and outputs, and the time relationship of inputs and outputs. Open loop feedback outputs and inputs are indicated with matching tab and indents in their respective blocks.

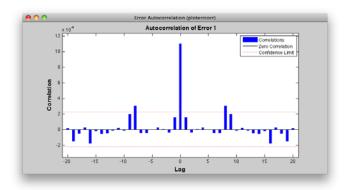
The Save Results panel of the Neural Network Time Series Tool allows you to generate both a Simple Script, which demonstrates how to get the same results as were obtained with the wizard, and an Advanced Script, which provides an introduction to more advanced techniques.



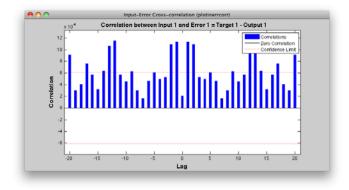
The Train Network panel of the Neural Network Time Series Tool introduces four new plots, which you can also access from the Network Training Tool and the command line.


The error histogram of any static or dynamic network can be plotted.

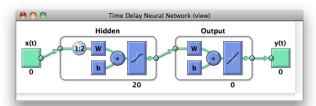
plotresponse(errors)


The dynamic response can be plotted, with colors indicating how targets were assigned to training, validation and test sets across timesteps. (Dividing data by timesteps and other criteria, in addition to by sample, is a new feature described in "New Time Series Validation" on page 15.)

plotresponse(targets,outputs)


The autocorrelation of error across varying lag times can be plotted.

ploterrcorr(errors)


The input-to-error correlation can also be plotted for varying lags.

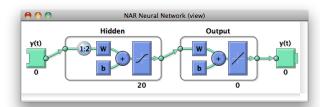
plotinerrcorr(inputs,errors)

Simpler time series neural network creation is provided for NARX and time-delay networks, and a new function creates NAR networks. All the network diagrams shown here are generated with the command view(net).

```
net = narxnet(inputDelays, feedbackDelays, hiddenSizes,
feedbackMode, trainingFcn
net = narnet(feedbackDelays, hiddenSizes, feedbackMode,
trainingFcn)
net = timedelaynet(inputDelays, hiddenSizes, trainingFcn)
```

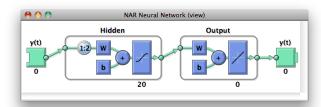

Several new data sets provide sample problems that can be solved with these networks. These data sets are also available within the ntstool GUI and the command line.

```
[x, t] = simpleseries_dataset;
[x, t] = simplenarx_dataset;
[x, t] = exchanger_dataset;
[x, t] = maglev_dataset;
[x, t] = ph_dataset;
[x, t] = pollution_dataset;
[x, t] = refmodel_dataset;
[x, t] = robotarm_dataset;
[x, t] = valve_dataset;
```


The preparets function formats input and target time series for time series networks, by shifting the inputs and targets as needed to fill initial input and layer delay states. This function simplifies what is normally a tricky data preparation step that must be customized for details of each kind of network and its number of delays.

```
[x, t] = simplenarx_dataset;
net = narxnet(1:2, 1:2, 10);
[xs, xi, ai, ts] = preparets(net, x, {}, t);
net = train(net, xs, ts, xi, ai);
y = net(xs, xi, ai)
```

The output-to-input feedback of NARX and NAR networks (or custom time series network with output-to-input feedback loops) can be converted between open- and closed-loop modes using the two new functions closeloop and openloop.


```
net = narxnet(1:2, 1:2, 10);
```

```
net = closeloop(net)
net = openloop(net)
```


The total delay through a network can be adjusted with the two new functions removedelay and adddelay. Removing a delay from a NARX network which has a minimum input and feedback delay of 1, so that it now has a minimum delay of 0, allows the network to predict the next target value a timestep ahead of when that value is expected.

```
net = removedelay(net)
net = adddelay(net)
```


The new function catsamples allows you to combine multiple time series into a single neural network data variable. This is useful for creating input and target data from multiple input and target time series.

```
x = catsamples(x1, x2, x3);

t = catsamples(t1, t2, t3);
```

In the case where the time series are not the same length, the shorter time series can be padded with NaN values. This will indicate "don't care" or equivalently "don't know" input and targets, and will have no effect during simulation and training.

```
x = catsamples(x1, x2, x3, 'pad')
t = catsamples(t1, t2, t3, 'pad')
```

Alternatively, the shorter series can be padded with any other value, such as zero.

```
x = catsamples(x1, x2, x3, 'pad', 0)
```

There are many other new and updated functions for handling neural network data, which make it easier to manipulate neural network time series data.

help nndatafun

New Time Series Validation

Normally during training, a data set's targets are divided up by sample into training, validation and test sets. This allows the validation set to stop training at a point of optimal generalization, and the test set to provide an independent measure of the network's accuracy. This mode of dividing up data is now indicated with a new property:

```
net.divideMode = 'sample'
```

However, many time series problems involve only a single time series. In order to support validation you can set the new property to divide data up by timestep. This is the default setting for NARXNET and other time series networks.

```
net.divideMode = 'time'
```

This property can be set manually, and can be used to specify dividing up of targets across both sample and timestep, by all target values (i.e., across sample, timestep, and output element), or not to perform data division at all.

```
net.divideMode = 'sampletime'
net.divideMode = 'all'
net.divideMode = 'none'
```

New Time Series Properties

Time series feedback can also be controlled manually with new network properties that represent output-to-input feedback in open- or closed-loop

modes. For open-loop feedback from an output from layer i back to input j, set these properties as follows:

```
net.inputs{j}.feedbackOutput = i
net.outputs{i}.feedbackInput = j
net.outputs{i}.feedbackMode = 'open'
```

When the feedback mode of the output is set to 'closed', the properties change to reflect that the output-to-input feedback is now implemented with internal feedback by removing input j from the network, and having output properties as follows:

```
net.outputs{i}.feedbackInput = [];
net.outputs{i}.feedbackMode = 'closed'
```

Another output property keeps track of the proper closed-loop delay, when a network is in open-loop mode. Normally this property has this setting:

```
net.outputs{i}.feedbackDelay = 0
```

However, if a delay is removed from the network, it is updated to 1, to indicate that the network's output is actually one timestep ahead of its inputs, and must be delayed by 1 if it is to be converted to closed-loop form.

```
net.outputs{i}.feedbackDelay = 1
```

New Flexible Error Weighting and Performance

Performance functions have a new argument list that supports error weights for indicating which target values are more important than others. The train function also supports error weights.

```
net = train(net, x, t, xi, ai, ew)
perf = mse(net, x, t, ew)
```

You can define error weights by sample, output element, time step, or network output:

```
ew = [1.0 0.5 0.7 0.2]; % Weighting errors across 4 samples
ew = [0.1; 0.5; 1.0]; % ... across 3 output elements
ew = {0.1 0.2 0.3 0.5 1.0}; % ... across 5 timesteps
ew = {1.0; 0.5}; % ... across 2 network outputs
```

These can also be defined across any combination. For example, weighting error across two time series (i.e., two samples) over four timesteps:

```
ew = \{[0.5 \ 0.4], [0.3 \ 0.5], [1.0 \ 1.0], [0.7 \ 0.5]\};
```

In the general case, error weights can have exactly the same dimension as targets, where each target has an associated error weight.

Some performance functions are now obsolete, as their functionality has been implemented as options within the four remaining performance functions: mse, mae, sse, and sae.

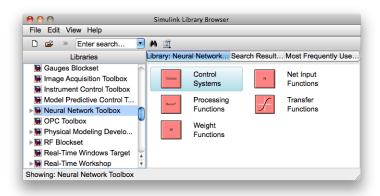
The regularization implemented in msereg and msnereg is now implemented with a performance property supported by all four remaining performance functions.

```
% Any value between the default 0 and 1.
net.performParam.regularization
```

The error normalization implemented in msne and msnereg is now implemented with a normalization property.

```
% Either 'normalized', 'percent', or the default 'none'. net.performParam.normalization
```

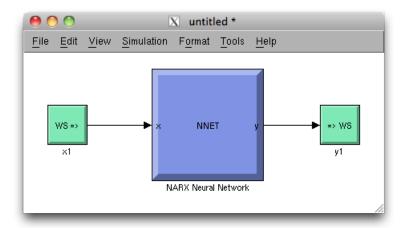
A third performance parameter indicates whether error weighting is applied to square errors (the default for mse and sse) or the absolute errors (mae and sae).


net.performParam.squaredWeighting % true or false

Compatibility Considerations

The old performance functions and old performance arguments lists continue to work as before, but are no longer recommended.

New Real Time Workshop and Improved Simulink Support


Neural network Simulink blocks now compile with Real Time Workshop® and are compatible with Rapid Accelerator mode.

gensim has new options for generating neural network systems in Simulink.

```
Name - the system name
SampleTime - the sample time
InputMode - either port, workspace, constant, or none.
OutputMode - either display, port, workspace, scope, or none
SolverMode - either default or discrete
```

For instance, here a NARX network is created and set up in MATLAB to use workspace inputs and outputs.

Simulink neural network blocks now allow initial conditions for input and layer delays to be set directly by double-clicking the neural network block. setsiminit and getsiminit provide command-line control for setting and getting input and layer delays for a neural network Simulink block.

setsiminit(sysName, netName, net, xi, ai);

New Documentation Organization and Hyperlinks

The User's Guide has been rearranged to better focus on the workflow of practical applications. The Getting Started section has been expanded.

References to functions throughout the online documentation and command-line help now link directly to their function pages.

help feedforwardnet

The command-line output of neural network objects now contains hyperlinks to documentation. For instance, here a feed-forward network is created and displayed. Its command-line output contains links to network properties, function reference pages, and parameter information.

net = feedforwardnet(10);

Subobjects of the network, such as inputs, layers, outputs, biases, weights, and parameter lists also display with links.

```
net.inputs{1}
net.layers{1}
net.outputs{2}
net.biases{1}
net.inputWeights{1, 1}
net.trainParam
```

The training tool nntraintool and the wizard GUIs nftool, nprtool, nctool, and ntstool, provide numerous hyperlinks to documentation.

New Derivative Functions and Property

New functions give convenient access to error gradient (of performance with respect to weights and biases) and Jacobian (of error with respect to weights and biases) calculated by various means.

```
staticderiv - Backpropagation for static networks
bttderiv - Backpropagation through time
fpderiv - Forward propagation
num2deriv - Two-point numerical approximation
num5deriv - Five-point numerical approximation
defaultderiv - Chooses recommended derivative function for the network
```

For instance, here you can calculate the error gradient for a newly created and configured feedforward network.

```
net = feedforwardnet(10);
[x, t] = simplefit_dataset;
net = configure(net, x, t);
d = staticderiv('dperf_dwb', net, x, t)
```

Improved Network Creation

New network creation functions have clearer names, no longer need example data, and have argument lists reduced to only the arguments recommended for most applications. All arguments have defaults, so you can create simple networks by calling network functions without any arguments. New networks are also more memory efficient, as they no longer need to store sample input and target data for proper configuration of input and output processing settings.

The new functions (and the old functions they replace) are:

```
feedforwardnet (newff)
cascadeforwardnet (newcf)
competlayer (newc)
distdelaynet (newdtdnn)
elmannet (newelm)
fitnet (newfit)
layrecnet (newlrn)
linearlayer (newlin)
lvqnet (newlvq)
narxnet (newnarx, newnarxsp)
patternnet (newpr)
perceptron (newp)
selforgmap (newsom)
timedelaynet (newtdnn)
```

The network's inputs and outputs are created with size zero, then configured for data when train is called or by optionally calling the new function configure.

```
net = configure(net, x, t)
```

Unconfigured networks can be saved and reused by configuring them for many different problems. unconfigure sets a configured network's inputs and outputs to zero, in a network which can later be configured for other data.

```
net = unconfigure(net)
```

Compatibility Considerations

Old functions continue working as before, but are no longer recommended.

Improved GUIs

The neural fitting nftool, pattern recognition nprtool, and clustering nctool GUIs have been updated with links back to the nnstart GUI. They give the option of generating either simple or advanced scripts in their last panel. They also confirm with you when closing, if a script has not been generated, or the results not yet saved.

Improved Memory Efficiency

Memory reduction, the technique of splitting calculations up in time to reduce memory requirements, has been implemented across all training algorithms for both gradient and network simulation calculations. Previously it was only supported for gradient calculations with trainlm and trainbr.

To set the memory reduction level, use this new property. The default is 1, for no memory reduction. Setting it to 2 or higher splits the calculations into that many parts.

net.efficiency.memoryReduction

Compatibility Considerations

The trainlm and trainbr training parameter MEM_REDUC is now obsolete. References to it will need to be updated. Code referring to it will generate a warning.

Improved Data Sets

All data sets in the toolbox now have help, including example solutions, and can be accessed as functions:

```
help simplefit_dataset
[x, t] = simplefit dataset;
```

See help for a full list of sample data sets:

help nndatasets

Updated Argument Lists

The argument lists for the following types of functions, which are not generally called directly, have been updated.

The argument list for training functions, such as trainlm, traingd, etc., have been updated to match train. The argument list for the adapt function adaptwb has been updated. The argument list for the layer and network initialization functions, initlay, initnw, and initwb have been updated.

Compatibility Considerations

Any custom functions of these types, or code which calls these functions manually, will need to be updated.

Version 6.0.4 (R2010a) Neural Network Toolbox Software

This table summarizes what's new in Version 6.0.4 (R2010a).

New Features and Changes	Version Compatibility Considerations	Fixed Bugs and Known Problems
No	No	Bug Reports Includes fixes

Version 6.0.3 (R2009b) Neural Network Toolbox Software

This table summarizes what's new in Version 6.0.3 (R2009b).

New Features and Changes	Version Compatibility Considerations	Fixed Bugs and Known Problems
No	No	Bug Reports Includes fixes

Version 6.0.2 (R2009a) Neural Network Toolbox Software

This table summarizes what's new in Version 6.0.2 (R2009a).

New Features and Changes	Version Compatibility Considerations	Fixed Bugs and Known Problems
No	No	Bug Reports Includes fixes

Version 6.0.1 (R2008b) Neural Network Toolbox Software

This table summarizes what's new in Version 6.0.1 (R2008b).

New Features and Changes	Version Compatibility Considerations	Fixed Bugs and Known Problems
No	No	Bug Reports Includes fixes

Version 6.0 (R2008a) Neural Network Toolbox Software

This table summarizes what's new in Version 6.0 (R2008a):

New Features and Changes	Version Compatibility Considerations	Fixed Bugs and Known Problems
Yes Details below	Yes—Details labeled as Compatibility Considerations, below. See also Summary.	Bug Reports Includes fixes

New features and changes introduced in this version are:

- "New Training GUI with Animated Plotting Functions" on page 28
- "New Pattern Recognition Network, Plotting, and Analysis GUI" on page 29
- "New Clustering Training, Initialization, and Plotting GUI" on page 29
- "New Network Diagram Viewer and Improved Diagram Look" on page 30
- "New Fitting Network, Plots and Updated Fitting GUI" on page 30

New Training GUI with Animated Plotting Functions

Training networks with the train function now automatically opens a window that shows the network diagram, training algorithm names, and training status information.

The window also includes buttons for plots associated with the network being trained. These buttons launch the plots during or after training. If the plots are open during training, they update every epoch, resulting in animations that make understanding network performance much easier.

The training window can be opened and closed at the command line as follows:

```
nntraintool
nntraintool('close')
```

Two plotting functions associated with the most networks are:

- plotperform—Plot performance.
- plottrainstate—Plot training state.

Compatibility Considerations

To turn off the new training window and display command-line output (which was the default display in previous versions), use these two training parameters:

```
net.trainParam.showWindow = false;
net.trainParam.showCommandLine = true;
```

New Pattern Recognition Network, Plotting, and Analysis GUI

The nprtool function opens a GUI wizard that guides you to a neural network solution for pattern recognition problems. Users can define their own problems or use one of the new data sets provided.

The newpr function creates a pattern recognition network at the command line. Pattern recognition networks are feed-forward networks that solve problems with Boolean or 1-of-*N* targets and have confusion (plotconfusion) and receiver operating characteristic (plotroc) plots associated with them.

The new confusion function calculates the true/false, positive/negative results from comparing network output classification with target classes.

New Clustering Training, Initialization, and Plotting GUI

The nctool function opens a GUI wizard that guides you to a self-organizing map solution for clustering problems. Users can define their own problem or use one of the new data sets provided.

The initsompc function initializes the weights of self-organizing map layers to accelerate training. The learnsomb function implements batch training of SOMs that is orders of magnitude faster than incremental training. The newsom function now creates a SOM network using these faster algorithms.

Several new plotting functions are associated with self-organizing maps:

- plotsomhits—Plot self-organizing map input hits.
- plotsomnc—Plot self-organizing map neighbor connections.
- plotsomnd—Plot self-organizing map neighbor distances.
- plotsomplanes—Plot self-organizing map input weight planes.
- plotsompos—Plot self-organizing map weight positions.
- plotsomtop—Plot self-organizing map topology.

Compatibility Considerations

You can call the newsom function using conventions from earlier versions of the toolbox, but using its new calling conventions gives you faster results.

New Network Diagram Viewer and Improved Diagram Look

The new neural network diagrams support arbitrarily connected network architectures and have an improved layout. Their visual clarity has been improved with color and shading.

Network diagrams appear in all the Neural Network Toolbox graphical interfaces. In addition, you can open a network diagram viewer of any network from the command line by typing

view(net)

New Fitting Network, Plots and Updated Fitting GUI

The newfit function creates a fitting network that consistes of a feed-forward backpropagation network with the fitting plot (plotfit) associated with it.

The nftool wizard has been updated to use newfit, for simpler operation, to include the new network diagrams, and to include sample data sets. It now allows a Simulink block version of the trained network to be generated from the final results panel.

Compatibility Considerations

The code generated by nftool is different the code generated in previous versions. However, the code generated by earlier versions still operates correctly.

Version 5.1 (R2007b) Neural Network Toolbox Software

This table summarizes what's new in Version 5.1 (R2007b):

New Features and Changes	Version Compatibility Considerations	Fixed Bugs and Known Problems
Yes Details below	Yes—Details labeled as Compatibility Considerations, below. See also Summary.	Bug Reports Includes fixes

New features and changes introduced in this version are:

- "Simplified Syntax for Network-Creation Functions" on page 32
- "Automated Data Preprocessing and Postprocessing During Network Creation" on page 34
- "Automated Data Division During Network Creation" on page 37
- "New Simulink Blocks for Data Preprocessing" on page 38
- "Properties for Targets Now Defined by Properties for Outputs" on page 39

Simplified Syntax for Network-Creation Functions

The following network-creation functions have new input arguments to simplify the network creation process:

- newcf
- newff
- newdtdnn
- newelm
- newfftd
- newlin
- newlrn

- newnarx
- newnarxsp

For detailed information about each function, see the corresponding reference pages.

Changes to the syntax of network-creation functions have the following benefits:

- You can now specify input and target data values directly. In the previous release, you specified input ranges and the size of the output layer instead.
- The new syntax automates preprocessing, data division, and postprocessing of data.

For example, to create a two-layer feed-forward network with 20 neurons in its hidden layer for a given a matrix of input vectors p and target vectors t, you can now use newff with the following arguments:

```
net = newff(p,t,20);
```

This command also sets properties of the network such that the functions sim and train automatically preprocess inputs and targets, and postprocess outputs.

In the previous release, you had to use the following three commands to create the same network:

```
pr = minmax(p);
s2 = size(t,1);
net = newff(pr,[20 s2]);
```

Compatibility Considerations

Your existing code still works but might produce a warning that you are using obsolete syntax.

Automated Data Preprocessing and Postprocessing During Network Creation

Automated data preprocessing and postprocessing occur during network creation in the Network/Data Manager GUI (nntool), Neural Network Fitting Tool GUI (nftool), and at the command line.

At the command line, the new syntax for using network-creation functions, automates preprocessing, postprocessing, and data-division operations.

For example, the following code returns a network that automatically preprocesses the inputs and targets and postprocesses the outputs:

```
net = newff(p,t,20);
net = train(net,p,t);
y = sim(net,p);
```

To create the same network in a previous release, you used the following longer code:

```
[p1,ps1] = removeconstantrows(p);
[p2,ps2] = mapminmax(p1);
[t1,ts1] = mapminmax(t);
pr = minmax(p2);
s2 = size(t1,1);
net = newff(pr,[20 s2]);
net = train(net,p2,t1);
y1 = sim(net,p2)
y = mapminmax('reverse',y1,ts1);
```

Default Processing Settings

The default input processFcns functions returned with a new network are, as follows:

```
net.inputs{1}.processFcns = ...
{'fixunknowns','removeconstantrows', 'mapminmax'}
```

These three processing functions perform the following operations, respectively:

- fixunknowns—Encode unknown or missing values (represented by NaN) using numerical values that the network can accept.
- removeconstantrows—Remove rows that have constant values across all samples.
- mapminmax—Map the minimum and maximum values of each row to the interval [-1 1].

The elements of processParams are set to the default values of the fixunknowns, removeconstantrows, and mapminmax functions.

The default output processFcns functions returned with a new network include the following:

```
net.outputs{2}.processFcns = {'removeconstantrows','mapminmax'}
```

These defaults process outputs by removing rows with constant values across all samples and mapping the values to the interval [-1 1].

sim and train automatically process inputs and targets using the input and output processing functions, respectively. sim and train also reverse-process network outputs as specified by the output processing functions.

For more information about processing input, target, and output data, see "Multilayer Networks and Backpropagation Training" in the Neural Network Toolbox User's Guide.

Changing Default Input Processing Functions

You can change the default processing functions either by specifying optional processing function arguments with the network-creation function, or by changing the value of processFcns after creating your network.

You can also modify the default parameters for each processing function by changing the elements of the processParams properties.

After you create a network object (net), you can use the following input properties to view and modify the automatic processing settings:

• net.inputs{1}.exampleInput—Matrix of example input vectors

- net.inputs{1}.processFcns—Cell array of processing function names
- net.inputs{1}.processParams—Cell array of processing parameters

The following input properties are automatically set and you cannot change them:

- net.inputs{1}.processSettings—Cell array of processing settings
- net.inputs{1}.processedRange—Ranges of example input vectors after processing
- net.inputs{1}.processedSize—Number of input elements after processing

Changing Default Output Processing Functions

After you create a network object (net), you can use the following output properties to view and modify the automatic processing settings:

- net.outputs{2}.exampleOutput—Matrix of example output vectors
- net.outputs{2}.processFcns—Cell array of processing function names
- net.outputs{2}.processParams—Cell array of processing parameters

Note These output properties require a network that has the output layer as the second layer.

The following new output properties are automatically set and you cannot change them:

- net.outputs{2}.processSettings—Cell array of processing settings
- net.outputs{2}.processedRange—Ranges of example output vectors after processing
- net.outputs{2}.processedSize—Number of input elements after processing

Automated Data Division During Network Creation

When training with supervised training functions, such as the Levenberg-Marquardt backpropagation (the default for feed-forward networks), you can supply three sets of input and target data. The first data set trains the network, the second data set stops training when generalization begins to suffer, and the third data set provides an independent measure of network performance.

Automated data division occurs during network creation in the Network/Data Manager GUI, Neural Network Fitting Tool GUI, and at the command line.

At the command line, to create and train a network with early stopping that uses 20% of samples for validation and 20% for testing, you can use the following code:

```
net = newff(p,t,20);
net = train(net,p,t);
```

Previously, you entered the following code to accomplish the same result:

```
pr = minmax(p);
s2 = size(t,1);
net = newff(pr,[20 s2]);
[trainV,validateV,testV] = dividevec(p,t,0.2,0.2);
[net,tr] = train(net,trainV.P,trainV.T,[],[],validateV,testV);
```

For more information about data division, see "Multilayer Networks and Backpropagation Training" in the Neural Network Toolbox User's Guide.

New Data Division Functions

The following are new data division functions:

- dividerand—Divide vectors using random indices.
- divideblock—Divide vectors in three blocks of indices.
- divideint—Divide vectors with interleaved indices.
- divideind—Divide vectors according to supplied indices.

Default Data Division Settings

Network creation functions return the following default data division properties:

net.divideFcn = 'dividerand'
net.divedeParam.trainRatio = 0.6;
net.divideParam.valRatio = 0.2;
net.divideParam.testRatio = 0.2;

Calling train on the network object net divided the set of input and target vectors into three sets, such that 60% of the vectors are used for training, 20% for validation, and 20% for independent testing.

Changing Default Data Division Settings

You can override default data division settings by either supplying the optional data division argument for a network-creation function, or by changing the corresponding property values after creating the network.

After creating a network, you can view and modify the data division behavior using the following new network properties:

- net.divideFcn—Name of the division function
- net . divideParam—Parameters for the division function

New Simulink Blocks for Data Preprocessing

New blocks for data processing and reverse processing are available. For more information, see "Processing Blocks" in the Neural Network Toolbox User's Guide.

The function gensim now generates neural networks in Simulink that use the new processing blocks.

Properties for Targets Now Defined by Properties for Outputs

The properties for targets are now defined by the properties for outputs. Use the following properties to get and set the output and target properties of your network:

- net.numOutputs—The number of outputs and targets
- net.outputConnect—Indicates which layers have outputs and targets
- net.outputs—Cell array of output subobjects defining each output and its target

Compatibility Considerations

Several properties are now obsolete, as described in the following table. Use the new properties instead.

Recommended Property	Obsolete Property
net.numOutputs	net.numTargets
net.outputConnect	net.targetConnect
net.outputs	net.targets

Version 5.0.2 (R2007a) Neural Network Toolbox Software

This table summarizes what's new in Version 5.0.2 (R2007a):

New Features and Changes	Version Compatibility Considerations	Fixed Bugs and Known Problems
No	No	Bug Reports

There are no new features or changes in this version.

Version 5.0.1 (R2006b) Neural Network Toolbox Software

This table summarizes what's new in Version 5.0.1 (R2006b):

New Features and Changes	Version Compatibility Considerations	Fixed Bugs and Known Problems
No	No	Bug Reports

There are no new features or changes in this version.

Version 5.0 (R2006a) Neural Network Toolbox Software

This table summarizes what's new in Version 5.0 (R2006a):

New Features and Changes	Version Compatibility Considerations	Fixed Bugs and Known Problems
Yes Details below	Yes—Details labeled as Compatibility Considerations, below. See also "Compatibility Considerations" on page 44.	Bug Reports

New features and changes introduced in this version are

- "Dynamic Neural Networks" on page 42
- "Wizard for Fitting Data" on page 43
- "Data Preprocessing and Postprocessing" on page 43
- "Derivative Functions Are Obsolete" on page 44

Dynamic Neural Networks

Version 5.0 now supports these types of dynamic neural networks:

Time-Delay Neural Network

Both focused and distributed time-delay neural networks are now supported. Continue to use the newfftd function to create focused time-delay neural networks. To create distributed time-delay neural networks, use the newdtdnn function.

Nonlinear Autoregressive Network (NARX)

To create parallel NARX configurations, use the newnarx function. To create series-parallel NARX networks, use the newnarxsp function. The sp2narx function lets you convert NARX networks from series-parallel to parallel configuration, which is useful for training.

Layer Recurrent Network (LRN)

Use the newlrn function to create LRN networks. LRN networks are useful for solving some of the more difficult problems in filtering and modeling applications.

Custom Networks

The training functions in Neural Network Toolbox are enhanced to let you train arbitrary custom dynamic networks that model complex dynamic systems. For more information about working with these networks, see the Neural Network Toolbox documentation.

Wizard for Fitting Data

The new Neural Network Fitting Tool (nftool) is now available to fit your data using a neural network. The Neural Network Fitting Tool is designed as a wizard and walks you through the data-fitting process step by step.

To open the Neural Network Fitting Tool, type the following at the MATLAB prompt:

nftool

Data Preprocessing and Postprocessing

Version 5.0 provides the following new data preprocessing and postprocessing functionality:

dividevec Automatically Splits Data

The dividevec function facilitates dividing your data into three distinct sets to be used for training, cross validation, and testing, respectively. Previously, you had to split the data manually.

fixunknowns Encodes Missing Data

The fixunknowns function encodes missing values in your data so that they can be processed in a meaningful and consistent way during network training. To reverse this preprocessing operation and return the data to its original state, call fixunknowns again with 'reverse' as the first argument.

removeconstantrows Handles Constant Values

removeconstantrows is a new helper function that processes matrices by removing rows with constant values.

mapminmax, mapstd, and processpca Are New

The mapminmax, mapstd, and processpca functions are new and perform data preprocessing and postprocessing operations.

Compatibility Considerations. Several functions are now obsolete, as described in the following table. Use the new functions instead.

New Function	Obsolete Functions
mapminmax	premnmx postmnmx tramnmx
mapstd	prestd poststd trastd
processpca	prepca trapca

Each new function is more efficient than its obsolete predecessors because it accomplishes both preprocessing and postprocessing of the data. For example, previously you used premnmx to process a matrix, and then postmnmx to return the data to its original state. In this release, you accomplish both operations using mapminmax; to return the data to its original state, you call mapminmax again with 'reverse' as the first argument:

mapminmax('reverse',Y,PS)

Derivative Functions Are Obsolete

The following derivative functions are now obsolete:

ddotprod dhardlim dhardlms dlogsig dmae
dmse
dmsereg
dnetprod
dnetsum
dposlin
dpurelin
dradbas
dsatlin
dsatlins
dsse
dtansig
dtribas

Each derivative function is named by prefixing a d to the corresponding function name. For example, sse calculates the network performance function and dsse calculated the derivative of the network performance function.

Compatibility Considerations

To calculate a derivative in this version, you must pass a derivative argument to the function. For example, to calculate the derivative of a hyperbolic tangent sigmoid transfer function A with respect to N, use this syntax:

```
A = tansig(N,FP)
dA_dN = tansig('dn',N,A,FP)
```

Here, the argument 'dn' requests the derivative to be calculated.

Version 4.0.6 (R14SP3) Neural Network Toolbox Software

This table summarizes what's new in Version 4.0.6 (R14SP3):

New Features and Changes	Version Compatibility Considerations	Fixed Bugs and Known Problems
No	No	Bug Reports

There are no new features or changes in this version.

Compatibility Summary for Neural Network Toolbox Software

This table summarizes new features and changes that might cause incompatibilities when you upgrade from an earlier version, or when you use files on multiple versions. Details are provided with the description of the new feature or change.

Version (Release)	New Features and Changes with Version Compatibility Impact
Latest Version V7.0.3 (R2012a)	None
V7.0.2 (R2011b)	None
V7.0.1 (R2011a)	None
V7.0 (R2010b)	See the Compatibility Considerations subheading for this new feature or change: • "New Flexible Error Weighting and Performance" on page 16 • "Improved Network Creation" on page 20 • "Improved Memory Efficiency" on page 22 • "Updated Argument Lists" on page 23
V6.0.4 (R2010a)	None
V6.0.3 (R2009b)	None
V6.0.2 (R2009a)	None
V6.0.1 (R2008b)	None

Version (Release)	New Features and Changes with Version Compatibility Impact
V6.0 (R2008a)	See the Compatibility Considerations subheading for this new feature or change:
	• "New Training GUI with Animated Plotting Functions" on page 28
	• "New Clustering Training, Initialization, and Plotting GUI" on page 29
	• "New Fitting Network, Plots and Updated Fitting GUI" on page 30
V5.1 (R2007b)	See the Compatibility Considerations subheading for this new feature or change: • "Simplified Syntax for
	Network-Creation Functions" on page 32
	• "Properties for Targets Now Defined by Properties for Outputs" on page 39
V5.0.2 (R2007a)	None
V5.0.1 (R2006b)	None
V5.0 (R2006a)	See the Compatibility Considerations subheading for this new feature or change: • "mapminmax, mapstd, and processpca Are New" on page 44
	• "Derivative Functions Are Obsolete" on page 44
V4.0.6 (R14SP3)	None